{-# LANGUAGE TemplateHaskell, FlexibleInstances, TypeSynonymInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-| Unittests for ganeti-htools. -} {- Copyright (C) 2009, 2010, 2011, 2012, 2013 Google Inc. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -} module Test.Ganeti.BasicTypes (testBasicTypes) where import Test.QuickCheck hiding (Result) import Test.QuickCheck.Function import Control.Applicative import Control.Monad import Test.Ganeti.TestHelper import Test.Ganeti.TestCommon import Ganeti.BasicTypes -- Since we actually want to test these, don't tell us not to use them :) {-# ANN module "HLint: ignore Functor law" #-} {-# ANN module "HLint: ignore Monad law, left identity" #-} {-# ANN module "HLint: ignore Monad law, right identity" #-} {-# ANN module "HLint: ignore Use >=>" #-} {-# ANN module "HLint: ignore Use ." #-} -- * Arbitrary instances instance (Arbitrary a) => Arbitrary (Result a) where arbitrary = oneof [ Bad <$> arbitrary , Ok <$> arbitrary ] -- * Test cases -- | Tests the functor identity law: -- -- > fmap id == id prop_functor_id :: Result Int -> Property prop_functor_id ri = fmap id ri ==? ri -- | Tests the functor composition law: -- -- > fmap (f . g) == fmap f . fmap g prop_functor_composition :: Result Int -> Fun Int Int -> Fun Int Int -> Property prop_functor_composition ri (Fun _ f) (Fun _ g) = fmap (f . g) ri ==? (fmap f . fmap g) ri -- | Tests the applicative identity law: -- -- > pure id <*> v = v prop_applicative_identity :: Result Int -> Property prop_applicative_identity v = pure id <*> v ==? v -- | Tests the applicative composition law: -- -- > pure (.) <*> u <*> v <*> w = u <*> (v <*> w) prop_applicative_composition :: Result (Fun Int Int) -> Result (Fun Int Int) -> Result Int -> Property prop_applicative_composition u v w = let u' = fmap apply u v' = fmap apply v in pure (.) <*> u' <*> v' <*> w ==? u' <*> (v' <*> w) -- | Tests the applicative homomorphism law: -- -- > pure f <*> pure x = pure (f x) prop_applicative_homomorphism :: Fun Int Int -> Int -> Property prop_applicative_homomorphism (Fun _ f) x = ((pure f <*> pure x)::Result Int) ==? pure (f x) -- | Tests the applicative interchange law: -- -- > u <*> pure y = pure ($ y) <*> u prop_applicative_interchange :: Result (Fun Int Int) -> Int -> Property prop_applicative_interchange f y = let u = fmap apply f -- need to extract the actual function from Fun in u <*> pure y ==? pure ($ y) <*> u -- | Tests the applicative\/functor correspondence: -- -- > fmap f x = pure f <*> x prop_applicative_functor :: Fun Int Int -> Result Int -> Property prop_applicative_functor (Fun _ f) x = fmap f x ==? pure f <*> x -- | Tests the applicative\/monad correspondence: -- -- > pure = return -- -- > (<*>) = ap prop_applicative_monad :: Int -> Result (Fun Int Int) -> Property prop_applicative_monad v f = let v' = pure v :: Result Int f' = fmap apply f -- need to extract the actual function from Fun in v' ==? return v .&&. (f' <*> v') ==? f' `ap` v' -- | Tests the monad laws: -- -- > return a >>= k == k a -- -- > m >>= return == m -- -- > m >>= (\x -> k x >>= h) == (m >>= k) >>= h prop_monad_laws :: Int -> Result Int -> Fun Int (Result Int) -> Fun Int (Result Int) -> Property prop_monad_laws a m (Fun _ k) (Fun _ h) = conjoin [ counterexample "return a >>= k == k a" ((return a >>= k) ==? k a) , counterexample "m >>= return == m" ((m >>= return) ==? m) , counterexample "m >>= (\\x -> k x >>= h) == (m >>= k) >>= h)" ((m >>= (\x -> k x >>= h)) ==? ((m >>= k) >>= h)) ] -- | Tests the monad plus laws: -- -- > mzero >>= f = mzero -- -- > v >> mzero = mzero prop_monadplus_mzero :: Result Int -> Fun Int (Result Int) -> Property prop_monadplus_mzero v (Fun _ f) = counterexample "mzero >>= f = mzero" ((mzero >>= f) ==? mzero) .&&. -- FIXME: since we have "many" mzeros, we can't test for equality, -- just that we got back a 'Bad' value; I'm not sure if this means -- our MonadPlus instance is not sound or not... counterexample "v >> mzero = mzero" (isBad (v >> mzero)) testSuite "BasicTypes" [ 'prop_functor_id , 'prop_functor_composition , 'prop_applicative_identity , 'prop_applicative_composition , 'prop_applicative_homomorphism , 'prop_applicative_interchange , 'prop_applicative_functor , 'prop_applicative_monad , 'prop_monad_laws , 'prop_monadplus_mzero ]